Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(2): 998-1005, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38193447

RESUMO

Hair follicle morphogenesis during embryonic development is driven by the formation of hair follicle germs (HFGs) via interactions between epithelial and mesenchymal cells. Bioengineered HFGs are potential tissue grafts for hair regenerative medicine because they can replicate interactions and hair follicle morphogenesis after transplantation. However, a mass preparation approach for HFGs is necessary for clinical applications, given that thousands of de novo hair follicles are required to improve the appearance of a single patient with alopecia. In this study, we developed a microfluidics-based approach for the large-scale preparation of HFGs. A simple flow-focusing microfluidic device allowed collagen solutions containing epithelial and mesenchymal cells to flow and generate collagen microbeads with distinct Janus structures. During the 3 days of culture, the collagen beads contracted owing to cellular traction forces, resulting in collagen- and cell-dense HFGs. The transplantation of HFGs into nude mice resulted in highly efficient de novo hair follicle regeneration. This method provides a scalable and robust tissue graft preparation approach for hair regeneration.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Folículo Piloso/transplante , Camundongos Nus , Colágeno , Dispositivos Lab-On-A-Chip
2.
J Biosci Bioeng ; 137(1): 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996318

RESUMO

Exosomes are lipid bilayer vesicles, 30-200 nm in diameter, that are produced by cells and play essential roles in cell-cell communication. Exosomes have been studied in several medical fields including dermatology. Hair loss, a major disorder that affects people and sometimes causes mental stress, urgently requires more effective treatment. Because the growth and cycling of hair follicles are governed by interactions between hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs), a better understanding of the mechanisms responsible for hair growth and cycling through exosomes may provide new insights into novel treatments for hair loss. In this review, we focused on the comprehensive knowledge and recent studies on exosomes in the field of hair development and regeneration. We classified exosomes of several cellular origins for the treatment of hair loss. Exosomes and their components, such as microRNAs, are promising drugs for effective hair loss treatment.


Assuntos
Derme , Exossomos , Humanos , Folículo Piloso , Cabelo , Células Cultivadas , Alopecia/terapia , Regeneração
3.
Sci Rep ; 13(1): 4847, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964149

RESUMO

In vitro models of human hair follicle-like tissue could be fundamental tools to better understand hair follicle morphogenesis and hair drug screening. During prenatal development and postnatal cyclic hair regeneration, hair follicle morphogenesis is triggered by reciprocal interactions and the organization of the epithelial and mesenchymal cell populations. Given this mechanism, we developed an approach to induce hair peg-like sprouting in organoid cultures composed of epithelial and mesenchymal cells. Human fetal/adult epithelial and mesenchymal cells were cultured in a medium supplemented with a low concentration of either Matrigel or collagen I. These extracellular matrices significantly enhanced the self-organization capabilities of the epithelial and mesenchymal cells, resulting in spherical aggregation and subsequent hair peg-like sprouting. The length of the hair peg sprouting and associated gene expression significantly increased in the presence of a well-known hair drug, minoxidil. This approach may be beneficial for testing hair growth-promoting drug candidates.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Adulto , Gravidez , Feminino , Humanos , Cabelo , Colágeno Tipo I , Organoides
4.
Sci Rep ; 13(1): 1478, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707659

RESUMO

Dermal papilla cells (DPCs) play critical roles in hair follicle development, but the underlying mechanisms that contribute to hair regeneration have yet to be fully elucidated, particularly in terms of alterations in androgenetic alopecia patients. In this study, we demonstrated that hypoxia-inducible factor-1α (HIF-1α) is suppressed in scalp tissues of androgenetic alopecia patients and potentially associated with hair follicle development. Using RT-qPCR and western blot, we found that mRNA and protein levels of trichogenic genes, LEF1 and versican (VCAN), were attenuated in HIF-1α knockdown DPCs. Under an in vivo mimicked environment in a three-dimensional spheroid culture, HIF-1α-suppressed DPCs downregulated the expression of hair induction-related genes. Finally, treatment with a HIF-1α activator resulted in the elevated expression of trichogenic genes in DPCs. This study highlights the importance of dermal HIF-1α expression in regulating trichogenic genes and provides a promising therapeutic target and a fundamental tissue engineering approach for hair loss treatment.


Assuntos
Folículo Piloso , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Folículo Piloso/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Alopecia/genética , Alopecia/metabolismo , Expressão Gênica , Hipóxia/metabolismo , Células Cultivadas
5.
Acta Biomater ; 165: 50-59, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35718100

RESUMO

Hair regenerative medicine is a promising approach to treat hair loss. The replication of in vivo tissue configurations and microenvironments, such as hair follicle germs, has been studied to prepare tissue grafts for hair regenerative medicine. However, such approaches should be scalable, because a single patient with alopecia requires thousands of tissue grafts. In this paper, we propose an approach for the scalable and automated preparation of highly hair-inductive tissue grafts using a bioprinter. Two collagen droplets (2 µL each) containing mesenchymal and epithelial cells were placed adjacent to each other to fabricate hair-follicle-germ-like grafts. During three days of culture, the pairs of microgel beads were spontaneously contracted by cell traction forces, whereas the two cell types remained separated, where the densities of the cells and collagen were enriched more than 10 times. This approach allowed us to fabricate submillimeter objects printed with millimeter-order accuracy, facilitating scalable and automated tissue graft preparation. Because of mesenchymal-epithelial interactions, hair microgels (HMGs, i.e., collagen- and cell-enriched microgels) efficiently regenerate hair follicles and shafts when transplanted into the back skin of mice. However, the generated hair shafts mostly remain under the skin. Therefore, we printed microgel beads onto surgical suture guides arrayed on a stage. The microgel beads were contracted along with the suture guides in culture prior to transplantation. The guide-inserted HMGs significantly improved hair-shaft sprouting through the skin, owing to the control of the orientation of the HMGs transplanted into the skin. This approach is a promising strategy to advance hair regenerative medicine. STATEMENT OF SIGNIFICANCE: This study proposes an approach for the scalable and automated preparation of highly hair-inductive grafts using a bioprinter. Two collagen droplets containing mesenchymal and epithelial cells were placed adjacently. Cell traction forces caused the pairs of microgel beads to spontaneously contract in culture. Because of mesenchymal-epithelial interactions, hair microgels (HMGs) efficiently regenerated hair follicles on the back skin of mice. However, the generated hair shafts remained mostly beneath the skin. Therefore, we printed microgel beads onto surgical suture guides arrayed on a stage. The guide-inserted HMGs significantly improved hair-shaft sprouting through the skin owing to the control of the orientation of the HMGs in the skin. This approach represents a promising strategy for advancing hair regenerative medicine.


Assuntos
Bioimpressão , Microgéis , Animais , Camundongos , Folículo Piloso , Medicina Regenerativa , Colágeno
6.
J Biosci Bioeng ; 134(1): 55-61, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35431119

RESUMO

Dermal papilla cells (DPCs), which play a central role in the regulation of hair follicle development and hair growth, are among the most promising cell sources for hair regenerative medicine. However, a critical issue in the use of DPCs is the immediate loss of hair inducing functions in typical two-dimensional (2D) culture. We have previously demonstrated that when DPCs are encapsulated in drops of collagen gel (named hair beads, HBs), the density of collagen and cells is concentrated >10-fold during 3 d of culture through the spontaneous constriction of the drops, leading to efficient hair follicle regeneration upon transplantation. However, the mechanisms responsible for the activation of the hair-inducing functions of DPCs have been poorly elucidated. Here, transcriptome comparisons of human DPCs in HB culture and in typical 2D culture revealed that the phosphoinositide 3-kinase and Akt (PI3K/Akt) signaling pathway was significantly upregulated in HB culture. Inhibition of the PI3K/Akt signaling pathway decreased the hair-inducing capability of DPCs in HBs, while the activation of the PI3K/Akt signaling pathway using an activator improved trichogenous gene expression of DPCs in 2D culture. These results suggest that the PI3K/Akt signaling pathway is crucial for the maintenance and restoration of hair inductivity of DPCs. HB culture and/or activators of the PI3K/Akt signaling pathway could be a promising strategy for preparing DPCs for hair regenerative medicine.


Assuntos
Folículo Piloso , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proliferação de Células , Células Cultivadas , Colágeno , Cabelo , Folículo Piloso/citologia , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
J Biosci Bioeng ; 130(6): 666-671, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32859524

RESUMO

Hair regenerative medicine is a promising approach for the treatment of hair loss and involves the transplantation of follicular stem cells into bald spots to regenerate hair. Various approaches have been investigated to engineer tissue grafts for use in hair regenerative medicine. Tissue-like three-dimensional aggregates, such as bioengineered hair follicle germs (HFGs), have shown great promise for hair regeneration, with normal tissue morphology and hair cycles. However, these approaches have not yet been applied in clinical settings, and further studies are needed to improve hair generation efficiency. The biological molecules in in vivo microenvironments around HFGs may provide cues for the in vitro preparation of HFGs with higher trichogenic functionalities. Activated platelet-rich plasma releasate (PRPr) is an autologous source of signaling molecules including growth factors and cytokines. In this study, we investigated the effects of PRPr on the preparation of HFGs in vitro. The presence of PRPr did not hinder the spontaneous formation of dumbbell-like HFGs from a suspension of embryonic skin-derived epithelial and mesenchymal cells in a custom-designed HFG culture plate. HFGs prepared with PRPr displayed greater levels of follicular gene expression compared to those prepared in the absence of PRPr. Moreover, the hair regeneration ability upon intracutaneous transplantation was significantly improved in the presence of PRPr. These results suggest that PRPr is beneficial for engineering HFGs for autologous hair regenerative medicine.


Assuntos
Folículo Piloso/citologia , Folículo Piloso/fisiologia , Plasma Rico em Plaquetas/metabolismo , Medicina Regenerativa/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...